存档

‘数学’ 分类的存档

影响计算机算法世界的十位大师

2017年9月17日 没有评论

原文出处: 《程序员》- 范凯 & 马林,原文写于 2006 年

1、伟大的智者——Don E.Knuth,中文名:高德纳

computer-algorithm-master-01

(1938-)算法和程序设计技术的先驱者。Oh,God!一些国外网站这样评价他。一般说来,不知道此人的程序员是不可原谅的。其经典著作《计算机程序设计艺术》更是被誉为算法中“真正”的圣经,像KMP和LR(K)这样令人不可思议的算法,在此书比比皆是。难怪连 Bill Gates都说:“如果能做对书里所有的习题,就直接来微软上班吧!”

对于Don E.Knuth本人,一生中获得的奖项和荣誉不计其数,包括图灵奖,美国国家科学金奖,美国数学学会斯蒂尔将(AMS Steel Prize),以及发明先进技术荣获的极受尊重的京都奖(KyotoPrize)等等,写过19部书和160余篇论文,每一篇著作都能用影响深远来形容。 Don E.Knuth也被公认是美国最聪明的人之一。当年他上大学的时候,常写些各种各样的编译器来挣外快,只要是他参加的编程比赛,总是第一名,同时也是世上少有的编程达到40年以上的程序员之一。他除了是技术与科学上的泰斗外,更是无可非议的写作高手,技术文章堪称一绝,文风细腻,讲解透彻,思路清晰而且没有学究气,估计这也是《计算机程序设计艺术》被称为圣经的原因之一。

2、首席算法官Udi Manber

computer-algorithm-master-02

世界上还有如此奇怪的职位?但是对于Amazon乃至Google来说,这一点也不奇怪。Udi Manber,这位前Amazon的“首席算法官”,现在是Google负责工程事务的副总裁。他研究WWW的应用程序、搜索以及隐藏在这背后的算法设计。在此期间,他与其他人共同开发了Agrep、Glimpse和Harvest等Unix上的搜索软件。1998年,Udi成为了Yahoo!的首席科 学家。2002年,Amazon创造性地给了Udi“首席算法官”的职位,和Udi为Amazon的“SearchInside the Book”搜索项目所做的工作相得益彰。

Udi还因为他所著的Introduction to Algorithms——A Creative Approach而被大家称道。

3、谦逊的长者——Edsger Wybe Dijkstra

computer-algorithm-master-03

1930年出生于荷兰阿姆斯特丹,2002年逝世于荷兰纽南。他在祖国荷兰获得数据和物理学学士,理论物理博士学位,2000年退休前一直是美国Texas大学的计算机科学和数学教授。以发现了图论中的最短路径算法(Dijkstra算法)而闻名于世,1972年因为ALGOL第二代编 程语言而获得图灵奖。“Go To StatementConsidered Harmful”(EWD215)也是被广为传颂的经典之作。除了科学研究之外,他最喜欢做的事情就是教学,被人称作“一天教学24小时”的教授。

且不说Dijkstra算法对计算科学,网络科学发展的深远影响,单从他在1972年获得图灵奖时的演讲“The Humble Programmer”就不得不肃然起敬,在获得计算机科学中至高无上的奖项时,Edgs Wybe Dijkstra仍然称自己不过是一个谦逊普通的程序员,何等胸襟,举世之中几人可比。

4、运筹学大师——George Dantizig

computer-algorithm-master-04

可谓是由父亲一手培养出的天才。George的父亲是俄国人,曾在法国师从著名的科学家Henri Poincar e。他曾经这样回忆自己的父亲:“在我还是个中学生时,他就让我做几千道几何题……解决这些问题的大脑训练是父亲给我的最好礼物。这些几何题,在发展我分析能力的过程中,起了最最重要的作用。”

在伯克利学习的时候,有一天George上课迟到,只看到黑板上写着两个问题,他只当是课堂作业,随即将问题抄下来并做出解答。六个月后,这门课的老师 ——著名的统计学家Jerzy Neyman——帮助他把答案整理了一下,发表为论文,George这才发现自己解决了统计学领域中一直悬而未决的两个难题。

George后来在运筹学建树极高,获得了包括“冯诺伊曼理论奖”在内的诸多奖项。他在Linearprogramming and extensions一书中研究了线性编程模型,为计算机语言的发展做出了不可磨灭的贡献。天妒英才,他于2005年5月13日去世。

5、推动时代前进的人——James Cooley

computer-algorithm-master-05

(1926-)美国数学家,哥伦比亚大学的数学博士,以他所创造的快速傅立叶变换(FFT)而著名,不能不说是意义极其重大,FFT的数学意 义不光在于使大家明白了傅立叶(Fourier)变换计算起来是多么容易,而且使得数字信号处理技术取得了突破性的进展,对于现在的网络通信,图形图像处理等等领域的发展与前进奠定了基础。Fourier变化的意义在于将电能变为了工业的命脉,而FFT的意义更是在于他推动了整个社会信息化的进程。在 IBM研究中心中主要从事数字信号处理的研究一直到1992年退休,同时他还是IEEE的数字信号处理委员会的成员。1980年获得ASSP’s Meritorious Service Award,1984年获得ASSP Society Award以及IEEE Centennial Medal。

6、FORTRAN 之父——John Backus

computer-algorithm-master-06

早年在Hill School学习的时候因为讨厌学习,成绩一踏糊涂而不得不在暑假补课。1943年他在父亲的要求下到维吉尼亚大学学习化学,随后参军、照顾头部受伤的伤员、在医学学校学习治疗,可是最后又都放弃了。不过还好,战后Backus进入纽约哥伦比亚大学学习数学,并于1949年毕业。在毕业前夕,他跑到了麦迪逊大街的IBM计算机中心参观。事情凑巧,和导游聊天的时候Backus谈到自己正在找工作,在导游的鼓励下,他和中心一位主管的面谈,成为了一名IBM?的程序员。

在IBM,Backus的才华得到了施展,发明了人类历史上第一个高级语言——FORTRAN。接着,又提出了规范描述编程语言语法的BNF。这位当年的“差生”终于被整个计算机世界肯定——美国计算机协会于1977年授予John Backus图灵奖。

7、实践探索先锋——Jon Bentley

computer-algorithm-master-07

1974年获得了斯坦福大学的学士学位,1976年获得北卡罗莱纳大学的硕士和博士学位。毕业后在卡耐基梅隆大学教授了6年计算机科学课程,1982年进 入贝尔实验室。2001年退休后加入了现在的Avaya实验室,他还曾作为访问学者在西点军校和普林斯顿大学工作。他的研究领域包括编程技术、算法设计、软件工具和界面设计等等。

他写作过三本编程书籍,其中最著名的就是涵盖从算法理论到软件工程各种主题的Programming Pearls(《编程珠玑》),这其实是他发表过的文章的合集。在这些文章里,Jon从工程实现的角度出发,为程序员们提供了一个个艰难问题的解决方案, 犹如一颗颗闪闪发亮的珍珠。Bentley的珍珠超出了可靠工程学的范畴,利用他的洞察力和创造力为那些恼人的问题提供了独特而巧妙的解决方案。

8、Pascal之父——Nicklaus Wirth

computer-algorithm-master-08

如果说有一个人因为一句话而得到了图灵奖,那么这个人应该就是NicklausWirth,这句话就是他提出的著名公式“算法+数据结构=程序”。这个公式对计算机科学的影响程度足以类似物理学中爱因斯坦的“E=MC^2”——一个 公式展示出了程序的本质。

Nicklaus Wirth,1934年出生于瑞士,1963年在加州大学伯克利分校取得博士学位。取得博士学位后直接被以高门槛著称的斯坦福大学聘到刚成立的计算机科学 系工作。在斯坦福大学成功的开发出Algol W以及PL360后,爱国心极强的Nicklaus Wirth于1967年回到祖国瑞士,第二年在他的母校苏黎世工学院他创建与实现了Pascal语言——当时世界上最受欢迎的语言之一。后来他的学生 Philipe Kahn毕业后和Anders Hejlsberg(Delphi之父)创办了Borland公司靠Turbo Pascal起家,很快成为了将Borland发展成为全球最大的开发工作厂商,这一切都不得不说要归工于PASCAL语言的魅力。PASCAL已经影响 了整整几代的程序员,Nicklaus Wirth的思想还将会继续指引现在和以后的程序员前进的方向。

9、算法的讲解者——Robert Sedgewick

computer-algorithm-master-09

是普林斯顿大学的计算机科学教授。他还是Adobe Systems的一名主管,也曾作为访问学者在Xerox PARC、IDA和INRIA工作。他在斯坦福大学获得博士学位。他的著作包括Algorithm in C、Algorithm in C++、Algorithm in Java等系列书籍,这些都再版多次。“没有人能够将算法和数据结构解释得比Robert Sedgewick更清楚易懂了!”很多读过他著作的程序员这样说。

目前Robert正在研究算法设计、数据结构、算法分析等方面的基础理论。他善于通过数学方法评估和预测算法性能,设法发现算法、数据结构的通用机制,例如使用逼近方法寻找更快速更高效的算法。另外,他还将算法和图形学结合 起来,例如使用可视化方法评估算法效率,算法的图形化模拟,用于出版物的高质量算法表现方法等等。

10、计算机领域的爵士——Tony Hoare

computer-algorithm-master-10

1934年出生于英国,1959年博士毕业于俄罗斯莫斯科国立大学,获得语言机器翻译专业学士学位。1960年发布了使他闻名于世的快速排序算法(Quick Sort),这个算法也是当前世界上使用最广泛的算法之一。

Tony Hoare在取得博士学位后,就职于Elliott Brothers,领导了Algol 60第一个商用编译器的设计与开发,由于其出色的成绩,最终成为该公司首席科学家。从1977年开始,Tony Hoare博士任职于牛津大学,投身于计算系统的精确性的研究、设计及开发。因其对Algol 60程序设计语言理论、互动式系统及APL的贡献,1980年被美国计算机协会授予“图灵奖”。

1999年在牛津大学退学后,Tony Hoare博士被微软剑桥研究院聘请担任高级程序员,从事微软剑桥研究院研究生成果的工业化应用的工作,以及协助其它研究人员进行服务于软件产业及用户的长期基础研究项目。2000年因为其在计算机科学与教育上做出的贡献被封为爵士。

分类: Developers, 数学 标签:

数学的深渊,你在哪里?

2017年8月8日 没有评论

喜欢数学的同学,可收藏 :)

分类: 数学 标签:

Wolfram:可以真正改变世界的编程语言

2015年8月2日 1 条评论

开发出著名数学软件Mathematica和知识型搜索引擎Wolfram Alpha(Siri的幕后技术)的英国数学家Stephen Wolfram宣布,他们终于开发出了一种将“世界握在手中而人人都能使用”的编程语言Wolfram,可以颠覆大众对编程的所有概念。

Wolfram 语言:

专门面向新一代程序员,Wolfram 语言有大量内置算法和知识,所有这些都可以通过它简练统一的符号式语言自动获取。Wolfram 语言的设计原理清晰灵活,从小规模扩展到大规模程序,可通过本地和云端, 实现小规模到大规模程序扩展的即时部署——并且以超过25年的开发历史为基础——创造世界上最有效率的编程语言。

官网:http://www.wolfram.com/language/

分类: Developers, 数学 标签:

当代最伟大数学家讲述二十世纪的数学

2015年7月27日 没有评论

本文来源于微信公众号‘机器之心’(almosthuman2014)

本文选自微信公众号:罗治兵(ID:chuangyiwantong),作者:Michael Atiyah,白承铭译,周性伟、冯惠涛校 。

本文作者Michael Atiyah爵士,英国数学家,被誉为当今最伟大的数学家之一。

这里的中译文刊登于《数学译林》2002年第2期,译者白承铭。白承铭教授任职于南开大学陈省身数学所,当时他翻译这篇文章是陈省身先生的提议。作为 Hermann Weyl 当之无愧的继承人,Atiyah 正是 Freeman Dyson 眼中的飞鸟(见 Dyson 的演讲《青蛙与飞鸟》,让他引领我们一起鸟瞰20世纪的数学吧!

谢谢邀请我来这里参加这个活动。当然,如果有人想谈论一个世纪的终结以及下一个世纪的开始,那么他有两个具有相当难度的选择:一个是回顾过去百年的数学;另一个是对未来百年数学发展的预测,我选择了前面这个比较困难的任务,任何人都可以预测未来而且我们并不能判定是对还是错。然而对过去的任何评述,每个人都可以提出异议。

我在这里所讲的是我个人的观点。这个报告不可能包含所有内容,特别是,有一些重要的内容我不准备涉及,一部分是因为我不是那些方面的专家,一部分也是出于它们已经在其他地方被评述过了。例如,我不会去谈论那些发生在逻辑与计算领域内的著名事件,这些事件往往是与像Hilbert,Godel,Turing这些伟大的名字相关的,除了数学在基础物理中的应用之外,我也不会谈论太多数学的其他应用,这是因为数学的应用太广泛了,而且这需要专门的论述。每一个方面都需要一个专门的报告.也许大家在这次会议的其他报告中会听到很多关于这些内容的演讲。另外,试着罗列一些定理,甚至是列出在过去一百年的著名数学家的名字也是毫无意义的,那简直是在做枯燥的练习。所以,代替它们的是,我试着选择一些我认为在很多方面都是很重要的主题来讨论并且强调围绕这些主题所发生的事情。

首先我有一个一般性的说明。世纪是一个大约的数字概念。我们不会真地认为在过整整一百年的时候,有些事情会突然停下来,再重新开始,所以当我描述二十世纪的数学时,有些内容实际上可能是跨世纪的,如果某件事件发生在十九世纪九十年代,并持续到二十世纪初,我将不去计较这种时间方面的细节。我所做的就象一个天文学家,工作在一个近似的数字环境中。实际上,许多东西始于十九世纪,只不过在二十世纪才硕果累累。

这个报告的难点之一是很难把我们自己放回到1900年时作为一位数学家的位置上,这是因为上个世纪的数学有非常多的内容已经被我们的文化和我们自己吸收掉了。难以想象人们不用我们的术语来思考的那个时代是什么样子的。实际上,如果现在有人在数学上有一个真正重要的发现,其后他也一定会与之一起被忽略掉了!他会完全地被融入到背景之中,于是为了能够回顾过去,我们必须努力去想象在不同时代,人们用不同方式思考问题时的情景。

从局部到整体

作为开始,我准备列一些主题并且围绕它们来讨论。我谈论的第一个主题概括地讲,就是被大家称为从局部到整体的转变。在古典时期,人们大体上已经研究了在小范围内,使用局部坐标等等来研究事物。在这个世纪,重点已经转移到试图了解事物整体和大范围的性质。由于整体性质更加难以研究,所以大多只能有定性的结果,这时拓扑的思想就变得非常重要了。正是Poincare,他不仅为拓扑学发展作出先驱性的贡献,而且也预言拓扑学将成为二十世纪数学的一个重要的组成部分,顺便让我提一下,给出一系列著名问题的Hilbert并没有意识到这一点。拓扑学很难在他的那些问题中找到具体体现.但是对Poincare而言,他相当清楚地看出拓扑学将成为一个重要的内容。

让我试着列一些领域,然后大家就能知道我在想什么了。例如,考虑一下复分析(也被称为“函数论”),这在十九世纪是数学的中心,也是象Weierstrass这样伟大人物工作的中心。对于他们而言,一个函数就是一个复变量的函数;对于Weierstrass而言,一个函数就是一个幂级数。它们是一些可以用于写下来,并且可以明确描绘的东西或者是一些公式。函数是一些公式:它们是明确可以用显式写下来的。然而接下来Abel、Riemann和其后许多人的工作使我们远离了这些,以至于函数变得可以不用明确的公式来定义,而更多地是通过它们的整体性质来定义:通过它们的奇异点的分布,通过它们的定义域位置,通过它们取值范围。这些整体性质正是一个特定函数与众不同的特性。局部展开只是看待它们的一种方式。

一个类似的事情发生在微分方程中,最初,解一个微分方程,人们需要寻找一个明确的局部解!是一些可以写下来的东西.随着事物的发展,解不必是一个显函数,人们不一定必须用好的公式来描述它们。解的奇异性是真正决定其整体性质的东西。与发生在复分析中的一切相比,这种精神是多么的类似,只不过在细节上有些不同罢了。

在微分几何中,Gauss和其他人的经典工作描述了小片的空间,小块的曲率以及用来描述局部几何的局部方程。只要人们想要了解曲面的整体图象以及伴随它们的拓扑时,从这些经典结果到大范围的转变就是很自然的了。当人们从小范围到大范围时,最有意义的性质就是拓扑的性质。

数论也有一个类似的发展,尽管它并不是很明显地适用于这一框架。数论学家们是这样来区分他们称之为“局部理论”和“整体理论”的:前者是当他们讨论一个单个的素数,一次一个素数,以及有限个素数时;后者是当他们同时讨论全部素数时。这种素数和点之间,局部和整体之间的类似性在数论发展过程中起了很重要的作用,并且那些在拓扑学发展中产生的思想深深地影响了数论。

当然这种情况也发生在物理学中,经典物理涉及局部理论,这时我们写下可以完全描述小范围性质的微分方程,接下来我们就必须研究一个物理系统的大范围性质。物理学涉及的全部内容就是当我们从小范围出发时,我们可以知道在大范围内正在发生什么,可以预计将要发生什么,并且沿着这些结论前进。

维数的增加

我的第二个主题有些不同,我称之为维数的增加。我们再次从经典的复变函数理论开始:经典复变函数论主要是详细讨论一个复变量理论并加以精炼。推广到两个或者更多个变量基本上发生在本世纪,并且是发生在有新现象出现的领域内。不是所有的现象都与一个变量的情形相同,这里有完全新的特性出现,并且n个变量的理论的研究越来越占有统治地位,这也是本世纪主要成就之一。

另一方面,过去的微分几何学家主要研究曲线和曲面,我们现在研究n维流形的几何,大家仔细想一想,就能意识到这是一个重要的转变。在早期,曲线和曲面是那些人们能真正在空间里看到的东西。而高维则有一点点虚构的成分,在其中人们可以通过数学思维来想象,但当时人们也许没有认真对待它们。认真对待它们并且用同样重视程度来研究它们的这种思想实际上是二十世纪的产物。同样地,也没有明显的证据表明我们十九世纪的先驱者们思考过函数个数的增加,研究不单单一个而是几个函数,或者是向量值函数(vector-valued function)。所以我们看到这里有一个独立和非独立变量个数增加的问题。

线性代数总是涉及多个变量,但它的维数的增加更具有戏剧性,它的增加是从有限维到无穷维,从线性空间到有无穷个变量的Hilbert空间。当然这就涉及到了分析,在多个变量的函数之后,我们就有函数的函数,即泛函。它们是函数空间上的函数。它们本质上有无穷多个变量,这就是我们称为变分学的理论。一个类似的事情发生在一般(非线性)函数理论的发展中。这是一个古老的课题,但真正取得卓越的成果是在二十世纪。这就是我谈的第二个主题。

从交换到非交换

第三个主题是从交换到非交换的转变。这可能是二十世纪数学,特别是代数学的最主要的特征之一。代数的非交换方面已经极其重要,当然,它源自于十九世纪。它有几个不同的起源。Hamilton在四元数方面的工作可能是最令人惊叹的,并且有巨大的影响,实际上这是受处理物理问题时所采用的思想所启发。还有Grassmann在外代数方面的工作,这是另一个代数体系,现在已经被融入我们的微分形式理论中。当然,还有Cayley以线性代数为基础的矩阵方面的工作和Galois在群论方面的工作等。

所有这些都是以不同的方式形成了把非交换乘法引入代数理论的基石,我形象地把它们说成是二十世纪代数机器赖以生存的“面包和黄油”。我们现在可以不去思考这些,但在十九世纪,以上所有例子都以各自不同的方式取得了重大的突破,当然,这些思想在不同的领域内得到了惊人的发展。矩阵和非交换乘法在物理中的应用产生了量子理论。Heisenberg对易关系是非交换代数在物理中的一个最重要的应用例子,以至后来被von

Neumann推广到他的算子代数理论中。

群论也是在二十世纪占重要位量的理论,我稍后再回来谈它。

从线性到非线性

我的下一个主题是从线性到非线性的转变。古典数学的大部分或者基本上是线性的,或者即使不是很精确的线性,也是那种可以通过某些扰动展开来研究的近似线性,真正的非线性现象的处理是非常困难的,并且只是在本世纪,才在很大的范围内对其进行了真正的研究。

我们从几何开始谈起:Euclid几何,平面的几何,空间的几何,直线的几何,所有这一切都是线性的。而从非欧几何的各个不同阶段到Riemann的更一般的几何,所讨论的基本上是非线性的.在微分方程中,真正关于非线性现象的研究已经处理了众多我们通过经典方法所看不到的新现象。在这里我只举两个例子,孤立子和混沌,这是微分方程理论两个非常不同的方面,在本世纪已经成为极度重要和非常著名的研究课题了。它们代表不同的极端。孤立子代表非线性微分方程的无法预料的有组织的行为,而混沌代表的是无法预料的无组织的行为(disorganized behavior)。这两者出现在不同领域,都是非常有趣和重要的,但它们基本土都是非线性现象。我们同样可以将关于孤立子的某些工作的早期历史追溯到十九世纪下叶,但那只是很少的一部分。

当然,在物理学,Maxwell方程(电磁学的基本方程)是线性偏微分方程。与之对应的是著名的Yang-Mills方程,它们是非线性方程并被假定用来调控与物质结构有关的力。这些方程之所以是非线性的,是因为Yang-Mills方程本质上是Maxwell方程的矩阵体现,并且由矩阵不可交换这一事实导致方程中出现非线性项。于是在这里我们看到了一个非线性性与非交换性之间的有趣的联系。非交换性产生一类特殊的非线性性,这的确是很有意思和很重要的.

几何与代数

至此我谈的是一些一般性的主题,现在我想谈论一下数学中的一个二分叉现象,它来回摇摆却始终伴随着我们,这就给了我一个机会来做一些哲学上的思索和说明。我指的是几何和代数之间的二分法,几何和代数是数学的两个形式支柱,并且都有悠久的历史。几何学可以追溯到古希腊甚至更早的时期;代数学则源于古阿拉伯人和古印度人。所以,它们都已经成为数学的基础,但它们之间有一种令人感到不太自然的关系。

让我首先由这个问题的历史开始。Euc1id几何是数学理论中最早的一个例子,直到Descartes在我们现在称为的笛卡儿平面中引入代数坐标之前,它一直是纯几何的。Descartes的做法是一种将几何思考化为代数运算的尝试。从代数学家们的角度来讲,这当然是对几何学的一个重大突破或者说一次重大的冲击,如果我们来比较Newton和Leibniz在分析方面的工作,我们会发现他们属于不同的传统,Newton基本上是一个几何学家而Leibniz基本土是一个代数学家,这其中有着很深刻的道理.对于Newton而言,几何学,或者是由他发展起来的微积分学,都是用来描述自然规律的数学尝试。他关心的是在很广泛意义下的物理,以及几何世界中的物理。在他看来,如果有人想了解事物,他就得用物理世界的观点来思考它,用几何图象的观点来看待它。当他发展微积分的时候,他想要发展的是微积分的一种能尽可能贴近隐藏在其后的物理内蕴的表现形式.所以他用的是几何论证,因为这样可以与实际意义保持密切关系,另一方面,Leibniz有一个目标,一个雄心勃勃的目标,那就是形式化整个数学,将之变成一个庞大的代数机器.这与Newton的途径截然不同,并且二者有很多不同的记号。正如我们所知道的,在Newton和Leibniz之间的这场大争论中,Leibniz的记号最后得胜。我们现在还沿用他的记号来写偏导数。Newton的精神尚在,但被人们埋葬了很长时间。

在十九世纪末期,也就是一百年前,Poincare和Hilbert是两个主要人物。我在前面已经提到过他们了,并且可以粗略地讲,他们分别是Newton和Leibniz的传人。Poincare的思想更多的是几何和拓扑的精神,他用这些思想作为他的基本洞察工具。Hilbert更多的是一个形式主义者,他要的是公理化,形式化,并且要给出严格的,形式的描述。虽然任何一个伟大的数学家都不能轻易地被归到哪一类中去,但是,很清楚地,他们属于不同的传统。

当准备这个报告的时候,我想我应该写下我们目前这一代中能够继承这些传统的具有代表性的人的名字。谈论还健在的人是十分困难的——谁该放在这张名单上呢?接着我又暗自思忖:有谁会介意被放在这么一张著名的名单的哪一边呢?于是我选择了两个名字Arnold Bourbaki,前者是Poincare-Newton传统的继承人,而后者,我认为,是Hilbert最著名的接班人。Arnold毫不含糊地认为:他的力学和物理的观点基本上是几何的,是源自于Newton的;以为存在处于二者之间的东西,除了象Riemann(他确实跟两者都有偏离)等少数人之外,都是一种误解。Bourbaki努力继续Hilbert的形式化的研究,将数学公理化和形式化推向了一个令人瞩目的范围并取得了一些成功。每一种观点都有它的优点,但是它们之间很难调和。

让我来解释一下我自己是如何看待几何和代数之间的不同。几何学当然讲的是空间,这是毫无疑问的.如果我面对这间房间里的听众,我可以在一秒中内或者是一微秒内看到很多,接收到大量的信息,当然这不是一件偶然的事件。我们大脑的构造与视觉有着极其重要的关系。我从一些从事神经生理学的朋友那里了解到,视觉占用了大脑皮层的百分之八十或九十。在大脑中大约有十七个中枢,每一个中枢专门用来负责视觉活动的不同部分:有些部分涉及的是垂直方向的,有些部分与水平方向有关,有些部分是关于色彩和透视的,最后有些部分涉及的是所见事物的具体含义和解说。理解并感知我们所看到的这个世界是我们人类发展进化的一个非常重要的部分。因此空间直觉(spatial intuition)或者空间知觉(spatial perception)是一种非常强有力的工具,也是几何学在数学上占有如此重要位置的原因,它不仅仅对那些明显具有几何性质的事物可以使用,甚至对那些没有明显几何性质的事物也可以使用。我们努力将它们归结为几何形式,因为这样可以让我们使用我们的直觉.我们的直觉是我们最有力的武器。特别是在向学生或是同事讲解一种数学时可以看得很清楚。当你讲解一个很长而且很有难度的论证,最后使学生明白了。学生这时会说些什么呢?他会说“我看到了(我懂了)!”在这里看见与理解是同义词,而且我们还可以用“知觉”这个词来同时形容它们,至少这在英语里是对的,把这个现象与其他语言作对比同样有趣。我认为有一点是很基本的:人类通过这种巨大的能力和视觉的瞬间活动获取大量的信息,从而得以发展,而教学参与其中并使之完善。

在另一方面(也许有些人不这样认为),代数本质上涉及的是时间。无论现在做的是哪一类代数,都是一连串的运算被一个接着一个罗列出来,这里“一个接着一个”的意思是我们必须有时间的概念。在一个静态的宇宙中,我们无法想象代数,但几何的本质是静态的:我可以坐在这里观察,没有什么变化,但我仍可以继续观察。然而,代数与时间有关,这是因为我们有一连串的运算,这里当我谈到“代数”时,我并不单单指现代代数。任何算法,任何计算过程,都是一个接着一个地给出一连串步骤,现代计算机的发展使这一切看得很清楚。现代计算机用一系列0和1来反映其信息并由此给出问题的答案。

代数涉及的是时间的操作,而几何涉及的是空间。它们是世界互相垂直的两个方面,并且它们代表数学中两种不同的观念。因此在过去数学家们之间关于代数和几何相对重要性的争论或者对话代表了某些非常非常基本的事情。

当然只是为了论证是哪一边输了,哪一边胜利了,这并不值得。当我考虑这个问题时,有一个形象的类比:“你愿意成为一个代数学家还是一个几何学家?”这个问题就象问:“你愿意是聋子还是瞎子?”一样.如果人的眼睛盲了,就看不见空间;如果人的耳朵聋了,就无法听见,听觉是发生在时间之中的,总的来说,我们还是宁愿二者都要。

在物理学,也有一个类似的、大致平行的关于物理概念和物理实验之间的划分。物理学有两个部分:理论——概念,想法,单词,定律——和实验仪器。我认为概念在某种广义的意义下是几何的,这是因为它们涉及的是发生在真实世界的事物。另一方面,实验更象一个代数计算。人们做事情总要花时间,测定一些数,将它们代入到公式中去。但是在实验背后的基本概念却是几何传统的一部分。

将上述二分叉现象用更哲学或者更文学的语言来说,那就是对几何学家而言,代数就是所谓的“浮士德的奉献”。正如大家所知道的,在歌德的故事里,浮士德通过魔鬼可以得到他所想要的(就是一个漂亮女人的爱),其代价是出卖他的灵魂,代数就是由魔鬼提供给数学家的供品。魔鬼会说:“我将给你这个有力的机器,它可以回答你的任何问题。

你需要做的就是把你的灵魂给我:放弃几何,你就会拥有这个威力无穷的机器”(现在可以把它想象成为一台计算机!).当然我们希望同时拥有它们,我们也许可以欺骗魔鬼,假装我们出卖灵魂,但不真地给它。不过对我们灵魂的威胁依然存在,这是因为当我们转入代数计算时,本质上我们会停止思考,停止用几何的观念来考虑问题,不再思考其含义。

在这里我谈论代数学家的话重了一些,但是基本土,代数的目标总是想建立一个公式,把它放到一个机器中去,转动一下把手就可以得到答案.也就是拿来一个有意义的东西,把它化成一个公式,然后得到答案.在这样的一个过程中,人们不再需要思考代数的这些不同阶段对应的几何是什么。就这样,洞察力丢掉了,而这在那些不同的阶段都是非常重要的.我们绝不能放弃这些洞察力!最终我们还是要回到这上面来的,这就是我所谈到的浮士德的奉献.我肯定这种讲法尖锐了一点。

几何和代数的这种选择导致能融合二者的一些交叉课题的产生,并且代数和几何之间的区别也不象我讲的那样直截了当和朴实无华.例如,代数学家们经常使用图式(diagram)。而除了几何直觉,图式又能是什么呢?

通用的技术

现在我不想再谈论太多就内容来划分的主题,而想谈谈那些依照已经使用的技术和常见方法所确定的主题,也就是我想描述一些已经广泛应用于众多领域的常见方法。第一个就是: 同调论 。

历史上同调论是作为拓扑学的一个分支而发展起来的。它涉及到以下情形。现有一个复杂的拓扑空间,我们想从中得到它的一些简单信息如计算它的洞或者类似事物的个数,

得到某些与之联系的可加的线性不变量等。这是一种在非线性条件下关干线性不变量的构造。从几何的角度来看,闭链可加可减,这样就得到了所谓的一个空间的同调群.同调论,作为一种从拓扑空间获取某些信息的基本代数工具,是在本世纪上半叶发现的。这是一种从几何中获益匪浅的代数。

同调概念也出现在其他一些方面。其另一个源头可以追溯到Hilbert及其关于多项式的研究中,多项式是非线性的函数,它们相乘可以得到更高次数的多项式。正是Hilbert那伟大的洞察力促使他来讨论“理想”,具有公共零点的多项式的线性组合.他要寻找这些理想的生成元.生成元可能有很多。他审视它们之间的关系以及关系之间的关系.于是他得到这些关系的一个分层谱系,这就是所谓的“Hilbert合系”。Hilbert的这个理论是一种非常复杂的方法,他试图将一个非线性的情形(多项式的研究)化为线性情形。本质上来讲,Hilbert构造了一个线性关系的复杂体系.能够把象多项式这样的非线性事物的某些信息纳入其中。

这个代数理论实际上是与上述拓扑理论平行的,而且现在它们已融合在一起构成了所谓的“同调代数”.在代数几何学中,本世纪五十年代最伟大的成就之一是层的上同调理论的发展及在解析几何学中的扩展,这是由Leray,Cartan,Serre和Grothendieck等人组成的法国学派取得的。从中我们可以感受到一种既有Riemann-Poincaré的拓扑思想,又有Hilbert的代数思想,再加上某些分析手段的融合。

这表明同调论在代数的其它分支也有着广泛的应用。我们可以引入同调群的概念,它通常是与非线性事物相关的线性事物。我们可以将之应用于群论,例如,有限群,以及李代数:它们都有相应的同调群。在数论方面,同调群通过Galois群产生了非常重要的应用。因此在相当广泛的情形下同调论都是强有力的工具之一,它也是二十世纪数学的一个典型的特征。

K-理论

我要谈的另外一个技术就是所谓的“K-理论”。它在很多方面都与同调论相似,它的历史并不很长(直到二十世纪中叶才出现,尽管其起源的某些方面也许可以追溯到更早一些),但它却有着很广泛的应用,已经渗透进了数学的许多部分。K-理论实际上与表示理论紧密相联,有限群的表示理论,可以讲,起源于十九世纪.但是其现代形式——K-理论却只有一个相对较短的历史。K-理论可以用下面的方式来理解:它可以被想成是应用矩阵论的一种尝试。我们知道矩阵的乘法是不可交换的,于是我们想构造矩阵可换的或是线性的不变量。迹,维数和行列式都是矩阵论中可换的不变量,而K-理论即是试图处理它们的一种系统的方法,它有时也被称为“稳定线性代数”。其思想就是,如果我们有很多矩阵,那么把两个不可换的矩阵A和矩阵B放在不同块的正交位置上,它们就可换了,因为在一个大的空间里,我们可以随意移动物体。于是在某些近似情况下,这样做是很有好处的,足以让我们得到一些信息,这就是作为一个技术的K-理论的基石。这完全类似于同调论,二者都是从复杂的非线性情形获取线性的信息。

在代数几何中,K-理论是由Grothendieck首先引入的,并且取得了巨大的成功,这些与我们刚刚谈到的层理论密切相关,而且也和他在Riemann-Roch定理方面的工作有紧密联系。

在拓扑学方面,Hirzebruch和我照搬了这些思想并且将它们应用到一个纯粹的拓扑范畴内。从某种意义下来说,如果Grothendieck的工作与Hilbert在合系方面的工作有关,那么我们的工作更接近于Riemann-Poincaré在同调方面的工作,我们用的是连续函数,而他用的是多项式.K-理论也在椭圆算子的指标理论和线性分析的研究中起了重要作用。

从另外一个不同的角度,Milnor,Quillen和其他人发展了K-理论的代数方面,这在数论的研究中有着潜力巨大的应用.沿着这个方向的发展导致了许多有趣问题的产生。

在泛函分析方面,包括象Kasparov在内的许多人的工作将连续的K-理论推广到非交换的C*-代数情形。一个空间上的连续函数在函数乘积意义下形成一个交换代数。但是在其他情形下,自然地产生了类似的关于非交换情形的讨论,这时,泛函分析也就自然而然地成为了这些问题的温床。

因此,K-理论是另外一个能够将相当广泛的数学的许多不同方面都能用这种比较简单的公式来处理的领域,尽管在每一个情形下,都有很多特定于该方面且能够连接其他部分的非常困难的,技巧性很强的问题。K-理论不是一个统一的工具,它更象是一个统一的框架,在不同部分之间具有类比和相似。

这个工作的许多内容已经被Alain Connes推广到“非交换微分几何”。

非常有趣的是,也就是在最近,Witten通过他在弦理论方面(基础物理学的最新思想)的工作发现许多很有趣的方法都与K-理论有关,并且K-理论看起来为那些所谓的“守恒量”提供了一个很自然的“家”。虽然在过去同调论被认为是这些理论的自然框架,但是现在看起来K一理论能提供更好的答案.

李群

另一个不单单是一项技术、而且是具有统一性的概念是李群。现在说起李群,我们基本上就是指正交群,酉群,辛群以及一些例外群,它们在二十世纪数学历史中起了非常重要的作用。它们同样起源于十九世纪.SophusLie是一位十九世纪的挪威数学家。正如很多人所讲的那样,他和Fleix Klein,还有其他人一起推动了“连续群理论”的发展.对Klein而言,一开始,这是一种试图统一处理Euclid几何和非欧几何这两种不同类型几何的方法。虽然这个课题源于十九世纪,但真正起步却是在二十世纪,作为一种能够将许多不同问题归并于其中来研究的统一性框架,李群理论深深地影响了二十世纪。

我现在来谈谈Klein思想在几何方面的重要性。对于Klein而言,几何就是齐性空间,在那里,物体可以随意移动而保持形状不变,因此,它们是由一个相关的对称群来控制的。Euclid群给出Euclid几何而双曲几何源于另一个李群.于是每一个齐性几何对应一个不同的李群。但是到了后来,随着对Riemann的几何学工作的进一步发展,人们更关心那些不是齐性的几何,此时曲率随着位置的变化而变化,并且空间不再有整体对称性,然而,李群仍然起着重要的作用,这是因为在切空间中我们有Euclid坐标,以至于李群可以出现在一种无穷小的层面上。于是在切空间中,从无穷小的角度来看,李群又出现了,只不过由于要区分不同位置的不同点,我们需要用某种可以处理不同李群的方式来移动物体。这个理论是被Eile Cartan真正发展起来的,成为现代微分几何的基石,该理论框架对于Einstein的相对论也起着基本的作用。当然Einstein的理论极大地推动了微分几何的全面发展。

进入二十世纪,我前面提到的整体性质涉及到了在整体层面上的李群和微分几何。一个主要的发展是给出所谓的“示性类”的信息,这方面标志性的工作是由Borel和Hirzebruch给出的,示性类是拓扑不变量并且融合三个关键部分:李群,微分几何和拓扑,当然也包含与群本身有关的代数。

在更带分析味的方向上,我们得到了现在被称为非交换调和分析的理论。这是Fourier理论的推广,对于后者,Fourier级数或者是Fourier积分本质上对应于圆周和直线的交换李群,当我们用更为复杂的李群代替它们时,我们就可以得到一个非常漂亮、非常精巧并且将李群表示理论和分析融为一体的理论.这本质上是Harish-Chandra一生的工作。

在数论方面,整个“Langlands纲领”,现在许多人都这样称呼它,紧密联系于Harish-Chandra理论,产生于李群理论之中。对于每一个李群,我们都可以给出相应的数论和在某种程度实施Langlands纲领。在本世纪后半叶,代数数论的一大批工作深受其影响.模形式的研究就是其中一个很好的例证,这还包括Andrew Wiles在Fermat大定理方面的工作。

也许有人认为李群只不过在几何范畴内特别重要而已,因为这是出于连续变量的需要。然而事实并非如此,有限域上的李群的类似讨论可以给出有限群,并且大多数有限群都是通过这种方式产生的。因此李群理论的一些技巧甚至可以被应用到有限域或者是局部域等一些离散情形中。这方面有许多纯代数的工作,例如与George Lusztig名字联系在一起的工作。在这些工作中,有限群的表示理论被加以讨论,并且我已经提到的许多技术在这里也可以找到它们的用武之地。

有限群

上述讨论已把我们带到有限群的话题,这也提醒了我:有限单群的分类是我必须承认的一项工作。许多年以前,也就是在有限单群分类恰要完成之时,我接受了一次采访,并且我还被问道我对有限单群分类的看法,我当时很轻率地说我并不认为它有那么重要.我的理由是有限单群分类的结果告诉我们,大多数单群都是我们已知的,还有就是一张有关若干例外情形的表.在某种意义下,这只不过是结束了一个领域。而并没有开创什么新东西,当事物用结束代替开始时,我不会感到很兴奋。但是我的许多在这一领域工作的朋友听到我这么讲,理所当然地会感到非常非常不高兴,我从那时起就不得不穿起“防弹衣”了。

在这项研究中,有一个可以弥补缺点的优点。我在这里实际上指的是在所有的所谓“散在群”(sporadic groups)中,最大的被赋予了“魔群”名字的那一个。我认为魔群的发现这件事本身就是有限单群分类中最叫人兴奋的结果了。可以看出魔群是一个极其有意思的动物而且现在还处于被了解之中。它与数学的许多分支的很大一部分有着意想不到的联系,如与椭圆模函数的联系,甚至与理论物理和量子场论都有联系。这是分类工作的一个有趣的副产品。正如我所说的,有限单群分类本身关上了大门,但是魔群又开启了一扇大门。

物理的影响

现在让我把话题转到一个不同的主题,即谈谈物理的影响。在整个历史中,物理与数学有着非常悠久的联系,并且大部分数学,例如微积分,就是为了解决物理中出现的问题而发展起来的。在二十世纪中叶,随着大多数纯数学在独立于物理学时仍取得了很好的发展,这种影响或联系也许变得不太明显.但是在本世纪最后四分之一的时间里,事情发生了戏剧性的变化,让我试着简单地评述一下物理学和数学,尤其是和几何的相互影响。

在十九世纪,Hamilton发展了经典力学,引入了现在称为Hamilton量的形式化。经典力学导出现在所谓的“辛几何”.这是几何的一个分支,虽然很早已经有人研究了,但是实际上直到最近二十年,这个课题才得到真正的研究.这已经是几何学非常丰富的一部分。几何学,我在这里使用这个词的意思是指,它有三个分支:Riemann几何,复几何和辛几何,并且分别对应三个不同类型的李群。辛几何是它们之中最新发展起来的,并且在某种意义下也许是最有趣的,当然也是与物理有极其紧密联系的一个,这主要因为它的历史起源与Hamilton力学有关以及近些年来它与量子力学的联系.现在,我前面提到过的、作为电磁学基本线性方程的Maxwell方程,是Hodge在调和形式方面工作和在代数几何中应用方面工作的源动力。这是一个非常富有成果的理论,并且自从本世纪三十年代以来已经成为几何学中的许多工作的基础。

我已经提到过广义相对论和Einstein的工作。量子力学当然更是提供了一个重要的实例.这不仅仅体现在对易关系上,而且更显著地体现在对Hilbert空间和谱理论的强调上。

以一种更具体和明显的方式,结晶学的古典形式是与晶体结构的对称性有关的。第一个被研究的实例是发生在点周围的有限对称群,这是鉴于它们在结晶学中的应用。在本世纪中,群论更深刻的应用已经转向与物理的关系,被假设用来构成物质的基本粒子看起来在最小的层面上有隐藏的对称性,在这个层面上,有某些李群在此出没,对此我们看不见,但是当我们研究粒子的实际行为时,它们的对称性就显现无遗了。所以我们假定了一个模型,在这个模型当中,对称性是一个本质性的要素,而且目前那些很普遍的不同理论都有一些象SU(2)和SU(3)那样的基本李群融入其中并构成基础的对称群,因此这些李群看起来象是建设物质大厦的砖石。

并不是只有紧李群才出现在物理中,一些非紧李群也出现在物理中,例如Lorentz群.正是由物理学家第一个开始研究非紧李群的表示理论的。它们是那些能够发生在Hilbert空间的表示,这是因为,对于紧群而言,所有不可约表示都是有限维的,而非紧群需要的是无穷维表示,这也是首先由物理学家意识到的。

在二十世纪的最后25年里,正如我刚刚完成阐述的,有一种巨大的从物理学的新思想到数学的渗透,这也许是整个世纪最引人注目的事件之一,就这个问题本身,也许就需要一个完整的报告,但是,基本上来讲,量子场论和弦理论已经以引人注目的方式影响了数学的许多分支,得到了众多的新结果、新思想和新技术.这里,我的意思是指物理学家通过对物理理论的理解已经能够预言某些在数学上是对的事情了。当然,这不是一个精确的证明,但是确有非常强有力的直觉、一些特例和类比所支持。数学家们经常来检验这些由物理学家预言的结果,并且发现它们基本上是正确的,尽管给出证明是很困难的而且它们中的许多还没有被完全证明。

所以说沿着这个方向,在过去的25年里取得了巨大的成果.这些结果是极其细致的.这并不象物理学家所讲的“这是一种应该是对的东西”。他们说:“这里有明确的公式,还有头十个实例(涉及超过12位的数字)”。他们会给出关于复杂问题的准确答案,这些决不是那种靠猜测就能得到的,而是需要用机器计算的东西,量子场论提供了一个重要的工具,虽然从数学上来理解很困难,但是站在应用的角度,它有意想不到的回报。这是最近25年中真正令人兴奋的事件。

在这里我列一些重要的成果:SimonDona1dson在四维流形方面的工作;Vaughan-Jones在扭结不变量方面的工作;镜面对称,量子群;再加上我刚才提到的“魔群”。

这个主题到底讲的是什么呢?正如我在前面提到过的一样,二十世纪见证了维数的一种转换并且以转换为无穷维而告终,物理学家超越了这些,在量子场论方面,他们真正试图对广泛的无穷维空间进行细致的研究,他们处理的无穷维空间是各类典型的函数空间,它们非常复杂,不仅是因为它们是无穷维的,而且它们有复杂的代数、几何以及拓扑,还有围绕其中的很大的李群,即无穷维的李群,因此正如二十世纪数学的大部分涉及的是几何、拓扑、代数以及有限维李群和流形上分析的发展,这部分物理涉及了在无穷维情形下的类似处理.当然,这是一件非常不同的事情,但确有巨大的成功。

让我更详尽地解释一下,量子场论存在于空间和时间中.空间的真正的意义是三维的,但是有简化的模型使我们将空间取成一维.在一维空间和一维时间里,物理学家遇到的典型事物,用数学语言来讲,就是由圆周的微分同胚构成的群或者是由从圆周到一个紧李群的微分映射构成的群。它们是出现在这些维数里的量子场论中的两个非常基本的无穷维李群的例子,它们也是理所当然的数学事物并且已经被数学家们研究了一段时间。

在这样一个1+1维理论中,我们将时空取成一个Riemann曲面并且由此可以得到很多新的结果。例如,研究一个给定亏格数的Riemann曲面的模空间是个可以追溯到上个世纪的古典课题。而由量子场论已经得到了很多关于这些模空间的上同调的新结果。另一个非常类似的模空间是一个具有亏格数g的Riemann曲面上的平坦G-丛的模空间。这些空间都是非常有趣的并且量子场论给出关于它们的一些精确结果。特别地,可以得到一些关于体积的很漂亮的公式,这其中涉及到Zeta函数的取值。

另一个应用与计数曲线(counting curve)有关。如果我们来看给定次数和类型的平面代数曲线,我们想要知道的是,例如,经过那么多点究竟有多少曲线,这样我们就要面临代数几何的计数问题,这些问题在上个世纪一直是很经典的。而且也是非常困难的。现在它们已经通过被称为“量子上同调”的现代技术解决了,这完全是从量子场论中得到的。或者我们也可以接触那些关于不在平面上而在弯曲族上的曲线的更加困难的问题,这样我们得到了另一个具有明确结果的被称为镜面对称的美妙理论,所有这些都产生于1+1维量子场论。

如果我们升高一个维数,也就是2-维空间和1-维时间,就可以得到Vaughan-Jones的扭结不变量理论.这个理论已经用量子场论的术语给予了很美妙的解释和分析。

量子场论另一个结果是所谓的“量子群”。现在关于量子群的最好的东西是它们的名字.明确地讲它们不是群!如果有人要问我一个量子群的定义,我也许需要用半个小时来解释,它们是复杂的事物,但毫无疑问它们与量子理论有着很深的联系它们源于物理,而且现在的应用者是那些脚踏实地的代数学家们,他们实际上用它们进行确定的计算。

如果我们将维数升得更高一些,到一个全四维理论(三加一维),这就是Donaldson的四维流形理论,在这里量子场论产生了重大影响.特别地,这还导致Seiberg和Witten建立了他们相应的理论,该理论建立在物理直觉之上并且也给出许多非同寻常的数学结果。所有这些都是些突出的例子.其实还有更多的例子。

接下来是弦理论并且这已经是过时的了!我们现在所谈论的是M一理论,这是一个内容丰富的理论,其中同样有大量的数学,从关于它的研究中得到的结果仍有待于进一步消化并且足可以让数学家们忙上相当长的时间。

历史的总结

我现在作一个简短的总结。让我概括地谈谈历史:数学究竟发生了什么?我相当随意地把十八世纪和十九世纪放在了一起,把它们当做我们称为古典数学的时代,这个时代是与Euler和Gauss这样的人联系在一起的,所有伟大的古典数学结果也都是在这个时代被发现和发展的。有人也许认为那几乎就是数学的终结了,但是相反地,二十世纪实际上非常富有成果,这也是我一直在谈论的。

二十世纪大致可以一分为二地分成两部分。我认为二十世纪前半叶是被我称为“专门化的时代”,这是一个Hilbert的处理办法大行其道的时代,即努力进行形式化,仔细地定义各种事物,并在每一个领域中贯彻始终。正如我说到过的,Bourbaki的名字是与这种趋势联系在一起的.在这种趋势下,人们把注意力都集中于在特定的时期从特定的代数系统或者其它系统能获得什么。二十世纪后半叶更多地被我称为“统一的时代”,在这个时代,各个领域的界限被打破了,各种技术可以从一个领域应用到另外一个领域,并且事物在很大程度上变得越来越有交叉性。我想这是一种过于简单的说法,但是我认为这简单总结了我们所看到的二十世纪数学的一些方面。

二十一世纪会是什么呢?我已经说过,二十一世纪是量子数学的时代,或者,如果大家喜欢,可称为是无穷维数学的时代。这意味着什么呢?量子数学的含义是指我们能够恰当地理解分析、几何、拓扑和各式各样的非线性函数空间的代数,在这里,“恰当地理解”,我是指能够以某种方式对那些物理学家们已经推断出来的美妙事物给出较精确的证明。

有人要说,如果用天真幼稚的方式(naive way)来研究无穷维并问一些天真幼稚的问题,通常来讲,只能得到错误的答案或者答案是无意义的,物理的应用、洞察力和动机使得物理学家能够问一些关于无穷维的明智的问题,并且可以在有合乎情理的答案时作一些非常细致的工作,因此用这种方式分析无穷维决不是一件轻而易举的事情。我们必须沿着这条正确的道路走下去。我们已经得到了许多线索,地图已经摊开了:我们的目标已经有了,只不过还有很长的路要走。

还有什么会发生在二十一世纪?我想强调一下Connes的非交换微分几何.Alain Connes拥有这个相当宏伟的统一理论.同样,它融合了一切.它融合了分析、代数、几何、拓扑、物理、数论,所有这一切都是它的一部分。这是一个框架性理论,它能够让我们在非交换分析的范畴里从事微分几何学家通常所做的工作,这当中包括与拓扑的关系。要求这样做是有很好的理由的,因为它在数论、几何、离散群等等以及在物理中都有(潜力巨大的或者特别的)应用。一个与物理有趣的联系也刚刚被发现。这个理论能够走多远,能够得到什么结果,还有待进一步观察.它理所当然地是我所期望的至少在下个世纪头十年能够得到显著发展的课题,而且找到它与尚不成熟的(精确)量子场论之间的联系是完全有可能的。

我们转到另一个方面,也就是所谓的“算术几何”或者是Arakelov几何,其试图尽可能多地将代数几何和数论的部分内容统一起来。这是一个非常成功的理论。它已经有了一个美好的开端,但仍有很长的路要走.这又有谁知道呢?

当然,所有这些都有一些共同点。我期待物理学能够将它的影响遍及所有地方,甚至是数论:Andrew Wiles不同意我这样说,只有时间会说明一切。

这些是我所能看到的在下个十年里出现的几个方面,但也有一些难以捉摸的东西:返回至低维几何.与所有无穷维的富有想象的事物在一起,低维几何的处境有些尴尬。从很多方面来看,我们开始时讨论的维数,或我们祖先开始时的维数,仍留下某些未解之谜。维数为2,3和4的对象被我们称为“低”维的.例如Thurston在三维几何的工作,目标就是能够给出一个三维流形上的几何分类,这比二维理论要深刻得多.Thurston纲领还远远没有完成,完成这个纲领当然将是一个重要的挑战。

在三维中另外一个引人注目的事件是Vaughan-Jones那些思想本质上来源于物理的工作。这给了我们更多的关于三维的信息,并且它们几乎完全不在Thurston纲领包含的信息之内。如何将这两个方面联系起来仍然是一个巨大的挑战,但是最近得到的结果暗示两者之间可能有一座桥,因此,整个低维的领域都与物理有关,但是其中实在有太多让人琢磨不透的东西。

最后,我要提一下的是在物理学中出现的非常重要的“对偶”。这些对偶,泛泛地来讲,产生于一个量子理论被看成一个经典理论时有两种不同的实现。一个简单的例子是经典力学中的位置和动量的对偶。这样由对偶空间代替了原空间,并且在线性理论中,对偶就是Fourier变换.但是在非线性理论中,如何来代替Fourier变换是巨大的挑战之一。数学的大部分都与如何在非线性情形下推广对偶有关.物理学家看起来能够在他们的弦理论和M一理论中以一种非同寻常的方式做到了这一点。他们构造了一个又一个令人叹为观止的对偶实例,在某种广义的意义下,它们是Fourier变换的无穷维非线性体现,并且看起来它们能解决问题,然而理解这些非线性对偶性看起来也是下个世纪的巨大挑战之一。

我想我就谈到这里。这里还有大量的工作,并且我觉得象我这样的一个老人可以和你们这么多的年轻人谈谈是一件非常好的事情;而且我也可以对你们说:在下个世纪,有大量的工作在等着你们去完成。

分类: 数学 标签:

数学与国家实力

2015年7月22日 没有评论

作者:张恭庆 (北京大学数学科学学院教授、中国科学院院士、第三世界科学院院士)

转自:中国论文网

  • 数学既是一种文化、一种“思想的体操”,更是现代理性文化的核心。
  • 马克思说:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”在前几次科技革命中,数学大都起到先导和支柱作用。
  • 我们不能要求决策者本人一定要懂得很多数学,但至少要经常想想工作中有没有数学问题需要请数学家来咨询。
  • 因为数学是科技创新的一种资源,是一种普遍适用的并赋予人以能力的技术。

一、世界强国与数学强国

数学实力往往影响着国家实力,世界强国必然是数学强国。数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求。17-19世纪英国、法国,后来德国,都是欧洲大国,也是数学强国。17世纪英国牛顿发明了微积分,用微积分研究了许多力学、天体运动的问题,在数学上这是一场革命,由此英国曾在数学上引领了潮流。

法国本来就有良好的数学文化传统,一直保持数学强国的地位。19世纪德、法争雄,在数学上的竞争也非常激烈,到了20世纪初德国哥廷根成为世界数学的中心。

俄罗斯数学从19世纪开始崛起,到了20世纪前苏联时期成为世界数学强国之一。特别是苏联于1958年成功发射了第一颗人造地球卫星,震撼了全世界。当时美国总统约翰?肯尼迪决心要在空间技术上赶超苏联。他了解到:苏联成功发射卫星的原因之一,是苏联在与此相关的数学领域处于世界的领先地位。此外,苏联重视基础科学教育(包含数学教育)也是它在基础科学研究中具有雄厚实力的一个重要原因,于是下令大力发展数学。

第二次世界大战前美国只是一个新兴国家,在数学上还落后于欧洲,但是今天他已经成为唯一的数学超级大国。战前德国纳粹排犹,大批欧洲的犹太裔数学家被迫移居美国,大大增强了美国的数学实力,为美国打胜二战、提升战后的经济实力做出了巨大贡献。苏联发射第一颗人造地球卫星后,美国加强了对数学研究和数学教育的投入,使得本来在科技界、工商界、军事部门等方面就有良好应用数学基础的美国,迅速成为一个数学强国。苏联、东欧解体后,美国又吸纳了其中大批的优秀数学家。

二、数学及其基本特征

数学是一门“研究数量关系与空间形式”(即“数”与“形”)的学科。 一般地说,根据问题的来源把数学分为纯粹数学与应用数学。研究其自身提出的问题的(如哥德巴赫猜想等)是纯粹数学(又称基础数学);研究来自现实世界中的数学问题的是应用数学。利用建立数学“模型”,使得数学研究的对象在“数”与“形”的基础之上又有扩充。各种“关系”,如“语言” “程序” “DNA排序” “选举”、“动物行为” 等都能作为数学研究的对象。数学成为一门形式科学。

纯粹数学与应用数学的界限有时也并不那么明显。一方面由于纯粹数学中的许多对象,追根溯源是来自解决外部问题(如天文学、力学、物理学等)时提出来的;另一方面,为了要研究从外部世界提出的数学问题(如分子运动、网络、动力系统、信息传输等)有时需要从更抽象、更纯粹的角度来考察才有可能解决。

数学的基本特征是:

  • 一是高度的抽象性和严密的逻辑性。
  • 二是应用的广泛性与描述的精确性。

它是各门科学和技术的语言和工具,数学的概念、公式和理论都已渗透在其他学科的教科书和研究文献中;许许多多数学方法都已被写成软件,有的数学软件作为商品在出售,有的则被制成芯片装置在几亿台电脑以及各种先进设备之中,成为产品高科技含量的核心。

  • 三是研究对象的多样性与内部的统一性。

数学是一个“有机的”整体,它像一个庞大的、多层次的、不断生长的、无限延伸的网络。高层次的网络是由低层次网络和结点组成的,后者是各种概念、命题和定理。各层次的网络和结点之间是用严密的逻辑连接起来的。这种连接是客观事物内在逻辑的反映。

数学家,包括纯粹数学家和部分应用数学家,他们的工作就在于:建立新的结点,寻找新的连接,清理和整合众多的连接,并从客观世界吸取营养来丰富、延伸这个网络。在研究现实世界的问题当中,一旦建立的数学模型和我们已有的结点或者低层次的网络相关,所有建立起来的连接都可能发挥作用,为我们提供解决问题的思路、理论和方法。在现代社会,人们的生活愈来愈离不开数学,我们天天享受着数学的服务,但许多人可能根本不知道!这种例子俯拾皆是。人人都用手机,但并不是人人都知道其中许多关键技术是数学提供的。

三、数学与当代科学技术

(一)数学与科学革命和技术革命

第一次科学革命的标志是近代自然科学体系的形成。是以哥白尼的“日心说”为代表, 后经开普勒、伽利略, 特别是牛顿等一大批科学家的推动完成的。牛顿为了研究动力学,发明了微积分。他的著作《自然哲学的数学原理》影响遍布经典自然科学的所有领域。

被称为19世纪自然科学三大发现的能量守恒与转化定律、细胞学说和进化论是第二次科学革命的主要内容。19世纪末到20世纪初,X射线、电子、天然放射性、DNA双螺线结构等的发现,使人类对物质结构的认识由宏观进入微观,相对论和量子力学的诞生使物理学理论和整个自然科学体系以及自然观、世界观都发生了重大变革,成为第三次科学革命。在这次革命中,数学起了很大作用。建立相对论需要黎曼几何,爱因斯坦本人就承认,是几何学家走到前头去了,他不过学了几何学家的东西,才发明了相对论。在量子力学中用到的概率、算子、特征值、群论等基本概念和结论都是数学上预先准备好了的,所以数学对第三次科学革命起到了推动作用。

  • 第一次技术革命是蒸汽机和机械的革命。
  • 第二次技术革命是电气和运输的革命。

虽然我们很难说出其中哪一项发明直接来自数学,但19世纪和20世纪数学家们发展了常微分方程、偏微分方程、变分学和函数论等数学分支,并把它们用于研究力学—包括流体力学和弹性力学、热学、电磁学等中的物理问题和工程问题,推动了这些学科的发展。此外还值得一提的是:电磁波的发现是麦克斯韦先从数学推导中预见,然后由赫兹用实验验证的。

  • 第三次技术革命以原子能技术、航天技术、电子计算机的应用为代表。

电子计算机从设想、理论设计、研制一直到程序存储等过程,数学家在其中起决定性的主导作用。从理论上哥德尔创建了可计算理论和递归理论,图灵第一个设计出通用数字计算机,他们都是数学家。冯·诺依曼是第一台电子计算机的研制、程序和存储的创建人,维纳和香农分别是控制论和信息论的创始人,他们也都是数学家。由此可见,数学差不多在历次科技革命中,都起过先导和支柱的作用。

(二)数学与自然科学

任何一门成熟的科学都需要用数学语言来描述,在数学模型的框架下来表达它们的思想和方法。当代数学不仅继续和传统的邻近学科保持紧密的联系,而且和一些过去不太紧密的领域的关联也得到发展,形成了数学化学、生物数学、数学地质学、数学心理学等众多交叉学科。数学在模拟智能和机器学习中也起了很重要的作用,包括:环境感知、计算机视觉、模式识别与理解以及知识推理等。

(三)数学与社会科学

数学在社会科学,如经济学、语言学、系统科学、管理科学中占居重要位置。现代经济理论的研究以数学为基本工具。通过建立数学模型和数学上的推演,来探求宏观经济和微观经济的规律。从1969年到2001年间,50名诺贝尔经济学奖得主中,有27人其主要贡献是运用数学方法解决经济问题。数学与金融科学的交叉—金融数学是当代十分活跃的研究领域。冯·诺依曼与摩根斯登的“对策论与经济行为”使“决策”成为一门科学。控制理论与运筹学,特别是线性规划、非线性规划、最优控制、组合优化等在交通运输、商业管理、政府决策等许多方面得到广泛的应用。在工业管理方面,统计质量管理起很大的作用。在运用数学理论之前,质量管理是通过事后检验把关来完成的,难以管控,而且成本也很高。根据概率分布的原理,可以将数理统计的方法应用到质量管理当中去,产生了统计质量管理的理论和方法。

(四)数学与数据科学

人们利用观察和试验手段获取数据,利用数据分析方法探索科学规律。数理统计学是一门研究如何有效地收集、分析数据的学科,它以概率论等数学理论为基础,是“定量分析”的关键学科,其理论与方法是当今自然科学、工程技术和人文社会科学等领域研究的重要手段之一。为了处理网络上的大量数据,挖掘、提取有用的知识,需要发展“数据科学”。近年来大家都从媒体上知道掌握“大数据”的重要性。美国启动了“大数据研究与发展计划”,欧盟实施了“开放数据战略”,举办了“欧盟数据论坛和大数据论坛”。大数据事实上已成为信息主权的一种表现形式,将成为继边防、海防、空防之后大国博弈的另一个空间。此外,大数据创业将成就新的经济增长点(电子商务—产品和个性化服务的大量定制成为可能,疾病诊断、推荐治疗措施,识别潜在罪犯等)。所以“大数据”已经成为各国政府管理人员、科技界和媒体十分关注的一个关键词。“大数据”的核心是将数学算法运用到海量数据上,预测事情发生的可能性。人们普遍认识到研究大数据的基础是:数学、计算机科学和统计科学。

(五)数学与技术科学

马克思说过:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”

今天的技术科学如信息、航天、医药、材料、能源、生物、环境等都成功地运用了数学。信息科学与数学的关系最为密切。信息安全、信息传输、计算机视觉、计算机听觉、图象处理、网络搜索、商业广告、反恐侦破、遥测遥感等都大量地运用了数学技术。高性能科学计算被认为是最重要的科学技术进步之一,也是21世纪发展和保持核心竞争力的必需科技手段。例如核武器、流体、星系演化、新材料、大工程等的计算机模拟都要求高性能的科学计算。但有了最快的计算机并不等于高性能科学计算就达到了国际先进水平。应用好高性能计算机解决科学问题,基础算法与可计算建模是关键。相对于计算机硬件,我国在基础算法与可计算建模研究方面的投入不足,不利于我国高性能计算机的持续发展。

药物分子设计已经成为发现新药的主要方向。其中计算机辅助设计扮演着不可替代的角色。用计算的方法从小分子库中搜索发现各种与酶可能的结合构象来筛选药物,或者采用基于受体结构的特征,以及受体和药物分子之间的相互作用方式来进行药物设计,已成为当前耗费计算资源最多的领域之一。

四、数学与国防

在二战中,数学家对于盟军取胜起到了什么作用?

冯·诺依曼是20世纪一位顶级数学家,也是第一台电子计算机程序和存储的研制构思者。他对美国原子弹的制造做了两大贡献:

  • 一是帮助洛斯阿拉莫斯找到了数学化的途径。“数学化”是指用快速计算机去模拟计算原子弹的爆炸过程和爆炸威力。
  • 二是研究爆聚炸弹,就是把一些炸弹、原子弹捆绑起来发出更大的威力。

乌拉姆是波兰数学家,他从欧洲逃到美国后参加了曼哈顿计划。为了模拟核实验,他发明了蒙特卡罗计算方法。

前苏联大数学家柯尔莫哥洛夫在二战中提出了平稳随机过程理论。美国数学家维纳提出了滤波理论,这些理论对于排除噪音的干扰,处理雷达所得的信息发挥了作用。

英国数学家图灵是设计出通用数字计算机的第一人。二战中,他与一些优秀数学家一起,最终破译了德军所用的密码体制Enigma。美国的密码分析学家也于1940年破译了日本的“紫密”密码。

1942年日本突袭中途岛海战失败,一个重要原因是美国破译了日本攻击中途岛的情报;1943年4月,利用所破译的情报,美国打下了山本五十六的座机,成为密码史上精彩的一页。

在现代化战争中,数学的作用更为突出。在武器方面有核武器、远程巡航导弹等先进武器的较量。在信息方面有保密、解密、干扰、反干扰的较量。对策方面有战略、策略、武器配制等方面的较量。每一项都和数学有紧密的关系。

核反应过程是在高温高压下进行的,核爆炸的巨大能量在微秒量级的时间内释放出来,很难在核试验中测量出核爆炸内部的细微过程,只能得到一些综合效应的数据。但通过核反应过程的数学模型,进行数值计算却可以给出爆炸过程中各个细节的图像、定量的数据以及各种因素与机制的相互作用。在参加全面禁止核试验条约后,通过数值计算模拟核试验就更重要了。

在巡航导弹方面,《解放军报》在一篇《数学的威力》报道中写道: “一个方程将卫星图像质量提高30%,一个公式改变了一个部队的知情模式。”信息的“加密”与“解密”是一种对抗,正如人们所说 “魔高一尺,道高一丈”。而这种对抗力量的表现全在所依靠的数学理论之上。例如,公开密钥算法大多基于计算复杂度很高的难题,要想求解,需要在高速计算机上耗费许多时日才能得到答案。这些方法通常来自于数论。例如,RSA源于整数因子分解问题,DSA源于离散对数问题,而近年发展快速的椭圆曲线密码学则基于与椭圆曲线相关的数学问题。

自从费曼提出量子计算机以来,人们希望设计出一种计算机,它能实现在冯?诺依曼计算机上不能实现的算法。如果一旦能把某种类型的计算速度大大增加,那么破解现有的密码就有可能。1994年数学家Shor已经对假想的量子计算机,提出了一种大合数的因子分解方法,其复杂度大大降低,使得在量子计算机上有可能破解许多现有的密码。从大的战役指挥,到小的作战方案,都需要了解敌我双方的实力,运筹帷幄,不打无准备之仗。这都需要进行定量化分析,建立模型,形成随机应变的作战指挥系统。其中概率统计、运筹学等数学分支发挥着重要作用。

五、数学与国民经济

数学与国民经济中的很多领域休戚相关。互联网、计算机软件、高清晰电视、手机、手提电脑、游戏机、动画、指纹扫描仪、汉字印刷、监测器等在国民经济中占有相当大的比重,成为世界经济的重要支柱产业。其中互联网、计算机核心算法、图像处理、语音识别、云计算、人工智能、3G等IT业主要研发领域都是以数学为基础的。所以信息产业可能是雇用数学家最多的产业之一。这里用到许多不同程度的数学工具,有的还有相当的深度,包括:编码、小波分析、图像处理、优化技术、随机分析、统计方法、数值方法、组合数学、图论等等。

上世纪70年代之后,计算机技术和计算流体力学的发展使数值模拟在大型客机的研制中发挥了巨大作用,计算流体力学与风洞试验、试飞一起并列成为获得气动数据的三种手段。

传统的大型工程,如水坝的设计需要对坝体和水工结构作静、动应力学分析。数学中的有限元方法是其中最基本的计算方法。

在石油勘探与开采中都大量运用数学方法,涉及到数字滤波、偏微分方程的理论和计算以及反问题等。数学模拟在化学工业中也起很大的作用。被称为现代化工之父的美国人埃莫森,把有些化工实验在“小试”阶段之后,通过成熟的数学建模手段取代“中试”,直接进入“大试”,缩短了实验周期,节省了经费。现代医疗诊断中常用的CT扫描技术,其原理是数学上的拉东变换。CT螺旋式的运动路线记录X光断层的信息。计算机将所有的扫描信息按数学原理进行整合,形成一个详细的人体影像。在更先进的生物光学成像技术的研究中也吸引了不少数学家的参与。

药物检验—要评估一种新药能否上市,需要经过新药疗效测试,这就要科学地设计试验,以排除各种随机性的干扰,真正评估出药物的效果和毒性。为此,人们设计出了双盲试验等试验手段。国外流行的SAS软件,是药物检验的必经之径。发达国家制药公司聘用大批拥有数理统计学位的雇员从事药检工作。

国际金融市场用“金融高技术”运作。“金融数学”是利用数学工具来研究金融,进行数学建模、理论分析、数值计算等定量分析的一种金融高技术。它是数学和计算技术在金融领域的应用。华尔街和一些发达国家大银行、证券公司高薪雇用大批高智商的数学、物理博士从事资本资产定价、套利、风险评估、期货定价等方面的工作。

发达国家的保险业中早已使用“精算”为金融决策提供依据。精算学是一门运用概率、统计等数学理论和多种金融工具,研究如何处理保险业及其他金融业中各种风险问题的定量方法和技术的学科,是现代保险业、金融投资业和社会保障事业发展的理论基础。灾害预测与风险评估关乎国计民生。

数值模拟是大气科学、地震预测等实验性科学中的重要实验手段。而要提高预测的准确性必须缩小计算网格 (提高分辨率)、复杂化物理过程,这些都导致计算量呈几何级数增加,解决的途径不仅要加大计算机、加快计算机的速度,还要改进数学方法。

有关的研究表明,我们国家计算软件工业相对落后,并不是因为我们缺少一般的程序人员,而是缺乏有较高数学修养的高水平的程序开发人员。与此相对照的是,比如贝尔实验室、朗讯、IBM、微软、谷歌、雅虎这类IT行业领袖,不但大量地招聘数学专业的博士、硕士到公司工作,而且还专门设有相当规模的数学研究部门,支持数学家开展纯粹数学理论研究,以确保长期的核心竞争力。IBM公司还为本公司五万名咨询人员建立了数学学历档案,以便能够针对每项工作任务,指派最合适的团队人员。

六、数学与文化教育

(一)数学是一种文化

数学作为现代理性文化的核心,提供了一种思维方式。这种思维方式包括:抽象化、运用符号、建立模型、逻辑分析、推理、计算,不断地改进、推广,更深入地洞察内在的联系,在更大范围内进行概括,建立更为一般的统一理论等一整套严谨的、行之有效的科学方法。按照这种思维方式,数学使得各门学科的理论知识更加系统化、逻辑化。

作为一种文化,它的特点在于:

  • 追求一种完全确定的、完全可靠的知识。在数学上是非分明,没有模棱两可。即使对于“偶然”发生的随机现象,对于“不确定”的事件,也要提出精确的概念和研究方法,确切回答某个事件发生的概率是多少,在什么确切的范围以内等等。
  • 追求更深层次的、更为简单的、超出人类感官的基本规律。数学家们是把原始的来自实际的问题,经过了层层抽象,在抽象的、仍然是客观事物真实反映的更深层次上来考察、研究其内在规律。
  • 它不仅研究宇宙的规律,而且也研究它自己。特别是研究自身的局限性,并在不断否定自身中达到新的高度。

由此可见,数学文化是一种非常实事求是的文化,它体现了一种真正的探索精神,一种毫不保守的创新精神。

(二)数学教育的重要性

在知识社会,数学对于国民素质的影响至关重要。1984年美国国家研究委员会在《进一步繁荣美国数学》中提出:“在现今这个技术发达的社会里,扫除‘数学盲’的任务已经替代了昔日扫除文盲的任务,而成为当今教育的主要目标”。1993年美国国家研究委员会又发表了《人人关心数学教育的未来》的报告,提出:“除了经济以外,对数学无知的社会和政治后果给每个民主政治的生存提出了惊恐的信号。因为数学掌握着我们的基于信息的社会的领导能力的关键。”当年读了这后一段话,很不理解,发生“棱镜事件”之后才恍然大悟。

在我国有没有扫除“数学盲”的必要?答案是肯定的。

普及数学知识。信息社会对于公民的逻辑能力要求明显提高。中、小学数学教育最主要的目的之一,应当在于提高学生的逻辑能力。因此数学作为一种“思想的体操”,应该是中、小学义务教育最重要的组成部分。此外,多举办各种科学普及讲座,向公众普及数学知识,介绍数学在各个领域中的应用也是必要的。

数学开阔人的视野,增添人的智慧。一个人是否受过这种文化熏陶,在观察世界、思考问题时会有很大差别。数学修养不但对于一般科学工作者很重要,就是有了数学修养的经营者、决策者,在面临市场有多种可能的结果,技术路线有多种不同选择时,也有可能减少失误。亿万富翁詹姆斯·赛蒙斯就是一个最好的例证。在进入华尔街之前,赛蒙斯是个优秀的数学家,进入华尔街之后,他和巴菲特的“价值投资”理念不同,赛蒙斯依靠数学模型和电脑管理旗下的巨额基金,用数学模型捕捉市场机会,由电脑做出交易决策。他称自己为“模型先生”,认为建立好的数学模型可以有效地降低风险。

发达国家在大型公共设施建设,管道、网线铺设以及航班时刻表的编排等方面,早已普遍应用运筹学的理论和方法,既省钱、省力又提高效率。可惜,运筹学的应用在我国还不普遍。其实我们不能要求决策者本人一定要懂得很多数学,但至少要经常想想工作中有没有数学问题需要请数学家来咨询。

加强和改善高等数学教育,培养创新人才。在1988年召开的国际数学教育大会上,美国数学教育家在 “面向新世纪的数学的报告”中指出,“对于中学后数学教育,最重要的任务是使数学成为一门对于怀着各种各样不同兴趣的学生都有吸引力的学科,要使大学数学对于众多不同的前程都是一种必要的不可少的预备”。对于我们来说,就是改革“高等数学课”,使得它对于非数学专业的学生都有吸引力,而且也使他们学到的内容能在今后工作中发挥作用。因为数学是科技创新的一种资源,是一种普遍适用的并赋予人以能力的技术,改善高等数学教育,提高大学生的数学水平,定将促进这种资源的开发和科技的创新。

壮大应用数学队伍,重视纯粹数学的研究和人才。今天,数学几乎已经深入到我们能想到的一切方面。这么多有用处的数学,表面上看都属于应用数学,然而,纯粹数学与应用数学的关系如同一座冰山,浮在水面上的是应用数学,而埋在水下的是纯粹数学。没有埋于水下的深厚积累,这些“应用”是建立不起来的。数学是一个有机的整体,许多深刻的纯粹数学理论把看似毫不相关的概念和结论链接了起来,为研究现实世界中的问题提供强有力的思想和方法。无数事例证明:许多当时看不到有任何应用前景的纯粹数学理论,后来在现实世界应用中发挥了巨大作用。例如:数论与现代密码学,调和分析与模式识别,几何分析与图像处理,随机分析与金融等等不胜枚举。

人们认为:下一次科技革命将以人类三种新的“生存形式”为重要标志,即网络人(生活在网络空间的虚拟人)、仿生人(高仿真智能人)和再生人(具有自然人特征的“复制人”)。预计这次科技革命大约将在2020-2050年到来。回顾前几次科技革命,数学大都起到了先导和支柱的作用。因此有理由相信:数学必将成为下一次科技革命最重要的推动力之一。我们要以早日实现中国梦的强烈责任感和紧迫感,加速建设数学强国,为在下次科技革命中赢得主动、抢占先机,奠定坚实基础,提供强大动力!

分类: 数学 标签: